The central object is the nlist
object which is a list
of uniquely named numeric objects (which can be integer or double
vectors, matrices or arrays) of class nlist. nlist
objects
are the raw data inputs for analytic engines such as JAGS, STAN and
TMB.
nlist <- nlist(
x = 1:2,
y = matrix(c(4:1), nrow = 2),
z = 5.1
)
print(nlist)
#> $x
#> [1] 1 2
#>
#> $y
#> [,1] [,2]
#> [1,] 4 2
#> [2,] 3 1
#>
#> $z
#> [1] 5.1
#>
#> an nlist object with 3 numeric elements
str(nlist)
#> List of 3
#> $ x: int [1:2] 1 2
#> $ y: int [1:2, 1:2] 4 3 2 1
#> $ z: num 5.1
#> - attr(*, "class")= chr "nlist"
nlist
objects with the same names, dimensionalities and
typeofs can be combined to create an nlists
object. An
nlists
object is a list of nlist
objects of S3
class nlists
. nlists
objects are useful for
storing multiple realizations of simulated data sets (as in the
sims
package) or iterations of MCMC samples of parameter
terms output by Bayesian analytic engines such as JAGS and STAN>
nlists <- nlists(
nlist,
nlist,
nlist(
x = 2:3,
y = matrix(c(5:8), nrow = 2),
z = 8
)
)
print(nlists)
#> $x
#> [1] 1 2
#>
#> $y
#> [,1] [,2]
#> [1,] 4 2
#> [2,] 3 1
#>
#> $z
#> [1] 5.1
#>
#> an nlists object of 3 nlist objects each with 3 numeric elements
str(nlists)
#> List of 3
#> $ :List of 3
#> ..$ x: int [1:2] 1 2
#> ..$ y: int [1:2, 1:2] 4 3 2 1
#> ..$ z: num 5.1
#> ..- attr(*, "class")= chr "nlist"
#> $ :List of 3
#> ..$ x: int [1:2] 1 2
#> ..$ y: int [1:2, 1:2] 4 3 2 1
#> ..$ z: num 5.1
#> ..- attr(*, "class")= chr "nlist"
#> $ :List of 3
#> ..$ x: int [1:2] 2 3
#> ..$ y: int [1:2, 1:2] 5 6 7 8
#> ..$ z: num 8
#> ..- attr(*, "class")= chr "nlist"
#> - attr(*, "class")= chr "nlists"
nlists
(and nlist
) objects can be converted
to mcmc
objects which are matrices with the parameter terms
as the columns and the iterations are the rows. mcmc
objects are defined by the coda
package.
as_mcmc(nlist)
#> Markov Chain Monte Carlo (MCMC) output:
#> Start = 1
#> End = 1
#> Thinning interval = 1
#> x[1] x[2] y[1,1] y[2,1] y[1,2] y[2,2] z
#> [1,] 1 2 4 3 2 1 5.1
as_mcmc(nlists)
#> Markov Chain Monte Carlo (MCMC) output:
#> Start = 1
#> End = 3
#> Thinning interval = 1
#> x[1] x[2] y[1,1] y[2,1] y[1,2] y[2,2] z
#> [1,] 1 2 4 3 2 1 5.1
#> [2,] 1 2 4 3 2 1 5.1
#> [3,] 2 3 5 6 7 8 8.0
str(as_mcmc(nlists))
#> 'mcmc' num [1:3, 1:7] 1 1 2 2 2 3 4 4 5 3 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr [1:7] "x[1]" "x[2]" "y[1,1]" "y[2,1]" ...
#> - attr(*, "mcpar")= num [1:3] 1 3 1
mcmc
objects can be coerced back to nlist
and nlists
objects.
as_nlist(as_mcmc(nlist))
#> $x
#> [1] 1 2
#>
#> $y
#> [,1] [,2]
#> [1,] 4 2
#> [2,] 3 1
#>
#> $z
#> [1] 5.1
#>
#> an nlist object with 3 numeric elements
as_nlists(as_mcmc(nlists))
#> $x
#> [1] 1 2
#>
#> $y
#> [,1] [,2]
#> [1,] 4 2
#> [2,] 3 1
#>
#> $z
#> [1] 5.1
#>
#> an nlists object of 3 nlist objects each with 3 numeric elements
Unlisting an nlist
object produces a named vector with
the parameter terms as names.
A vector can be coerced back to an nlist object if an nlist object is available to act as a skeleton.
A data.frame
of numeric vectors can be coerced to an
nlist
object.
And nlist
and nlists
object can be
converted to a term_frame
. A term_frame
is a
data.frame with the parameter terms as one column and the values as
another. In the case of an nlists
object a sample column is
also created specifies the iteration number.
as_term_frame(nlist)
#> term value
#> 1 x[1] 1.0
#> 2 x[2] 2.0
#> 3 y[1,1] 4.0
#> 4 y[2,1] 3.0
#> 5 y[1,2] 2.0
#> 6 y[2,2] 1.0
#> 7 z 5.1
as_term_frame(nlists)
#> term sample value
#> 1 x[1] 1 1.0
#> 2 x[2] 1 2.0
#> 3 y[1,1] 1 4.0
#> 4 y[2,1] 1 3.0
#> 5 y[1,2] 1 2.0
#> 6 y[2,2] 1 1.0
#> 7 z 1 5.1
#> 8 x[1] 2 1.0
#> 9 x[2] 2 2.0
#> 10 y[1,1] 2 4.0
#> 11 y[2,1] 2 3.0
#> 12 y[1,2] 2 2.0
#> 13 y[2,2] 2 1.0
#> 14 z 2 5.1
#> 15 x[1] 3 2.0
#> 16 x[2] 3 3.0
#> 17 y[1,1] 3 5.0
#> 18 y[2,1] 3 6.0
#> 19 y[1,2] 3 7.0
#> 20 y[2,2] 3 8.0
#> 21 z 3 8.0
A term_frame
object is data.frame.