--- title: "Allometry of Kootenay Lake Rainbow Trout" author: "Evan Amies-Galonski" date: "May 25, 2018" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{kootqlt} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( message=FALSE, warning = FALSE, collapse = TRUE, comment = "#>" ) ``` Here we plot relationships between Rainbow Trout metrics and fit a linear model to estimate the allometric ralationships for: ## Weight vs Length ```{r,fig.align='center',out.extra='angle=90'} library(ggplot2) library(broom) fish <- kootlake::fish is.na(fish$Weight[is.na(fish$Weight) | fish$Weight == 0]) <- TRUE WL_mod <- lm(log(Weight) ~ log(Length), data = fish) WL_data <- data.frame(Length = seq(min(fish$Length), max(fish$Length), length.out = 30L)) WL_data$Weight <- exp(predict(WL_mod, newdata = WL_data)) ggplot(data = fish, aes(x = Length, y = Weight)) + geom_point(alpha = 0.4, size = 1) + geom_line(data = WL_data, col = "blue") + expand_limits(y = 0) tidy(WL_mod, conf.int = TRUE) ``` ## Fecundity vs Length ```{r,fig.align='center',out.extra='angle=90'} FL_mod <- lm(log(Fecundity) ~ log(Length), data = fish) FL_data <- data.frame(Length = seq(min(fish$Length), max(fish$Length), length.out = 30L)) FL_data$Fecundity <- exp(predict(FL_mod, newdata = FL_data)) ggplot(data = fish, aes(x = Length, y = Fecundity)) + geom_point(alpha = 0.5, size = 1) + geom_line(data = FL_data, col = "blue") + expand_limits(y = 0) tidy(FL_mod, conf.int = TRUE) ``` ## Fecundity vs Weight ```{r,fig.align='center',out.extra='angle=90'} FW_mod <- lm(log(Fecundity) ~ log(Weight), data = fish) FW_data <- data.frame(Weight = seq(min(fish$Weight, na.rm = TRUE), max(fish$Weight, na.rm = TRUE), length.out = 30L)) FW_data$Fecundity <- exp(predict(FW_mod, newdata = FW_data)) ggplot(data = fish, aes(x = Weight, y = Fecundity)) + geom_point(alpha = 0.5, size = 1) + geom_line(data = FW_data, col = "blue") + expand_limits(y = 0) tidy(FW_mod, conf.int = TRUE) ```