--- title: "jmbr" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{jmbr} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Introduction `jmbr` (pronounced jimber) is an R package to facilitate analyses using Just Another Gibbs Sampler ([`JAGS`](http://mcmc-jags.sourceforge.net)). It is part of the [mbr](https://github.com/poissonconsulting/mbr) family of packages. ## Model The first part of the model is where priors, random effects and the relationships of interest are set in JAGS. Example model: ```{r, message = FALSE} library(jmbr) library(embr) ``` ```{r, eval = FALSE} model <- model("model { # Priors alpha ~ dnorm(0, 10^-2) T(0,) beta1 ~ dnorm(0, 10^-2) beta2 ~ dnorm(0, 10^-2) beta3 ~ dnorm(0, 10^-2) # Random Effect log_sAnnual ~ dnorm(0, 10^-2) log(sAnnual) <- log_sAnnual for(i in 1:nAnnual) { bAnnual[i] ~ dnorm(0, sAnnual^-2) } # Prediction of Interest for (i in 1:length(Pairs)) { log(ePairs[i]) <- alpha + beta1 * Year[i] + beta2 * Year[i]^2 + beta3 * Year[i]^3 + bAnnual[Annual[i]] Pairs[i] ~ dpois(ePairs[i]) } }") ``` - Priors include the mean and SD value, which is converted to precision by doing $SD^-2$. - __T(0,)__ Truncates the value at zero. ### New Expression The new expression is written in R Code and is used to calculate derived parameters. ```{r, eval = FALSE} new_expr = " for (i in 1:length(Pairs)) { log(prediction[i]) <- alpha + beta1 * Year[i] + beta2 * Year[i]^2 + beta3 * Year[i]^3 + bAnnual[Annual[i]] fit[i] <- prediction[i] residual[i] <- res_pois(Pairs[i], fit[i]) }" ``` ### Modify Data This section modifies a data frame to the form it will be passed to the analysis code. The modified data is passed in list form. ```{r, eval = FALSE} modify_data = function(data) { data <- data |> select(-Eyasses) data } ``` ### Select Data & Random Effects Select data is a named list specifying the columns to select and their associated classes and values as well as transformations and scaling options. Random effects gets the random effects definitions for an object as a named list, where `bAnnual` refers to the column name `Annual` in the data. ```{r, eval = FALSE} select_data = list("Pairs" = c(15L, 200L), "Year*" = 1L, Annual = factor()), random_effects = list(bAnnual = "Annual"), ``` All parameters in the data that are included in the model must be listed here. - If there are values in the Pairs column outside of the specified range, including NA's, an error is thrown. - `"Year*" = 1L` indicates Year is of class integer. #### Transformations - `Year-` = subtracts the minimum value (the first year) - `Year+` = subtracts the average value (centering) - `Year*` = subtracts the average value and divides by the SD (standardizing) ### Initial Values Initial values of a parameter can be set prior to the analysis as a single argument function taking the modified data and returning a named list of initial values. Unspecified initial values for each chain are drawn from the prior distributions. ```{r, eval = FALSE} gen_inits = function(data) { inits <- list() inits$ePairs <- data$Pairs + 1 inits }, ``` ### nthin At the end of the script is where the thinning rate is set, i.e. how much the MCMC chains should be thinned out before storing them. Setting `nthin = 1` corresponds to keeping all values. Setting `nthin = 100` would result in keeping every 100th value and discarding all other values. ## Full Model ```{r} model <- model("model { alpha ~ dnorm(0, 10^-2) beta1 ~ dnorm(0, 10^-2) beta2 ~ dnorm(0, 10^-2) beta3 ~ dnorm(0, 10^-2) log_sAnnual ~ dnorm(0, 10^-2) log(sAnnual) <- log_sAnnual for(i in 1:nAnnual) { bAnnual[i] ~ dnorm(0, sAnnual^-2) } for (i in 1:length(Pairs)) { log(ePairs[i]) <- alpha + beta1 * Year[i] + beta2 * Year[i]^2 + beta3 * Year[i]^3 + bAnnual[Annual[i]] Pairs[i] ~ dpois(ePairs[i]) } }", new_expr = " for (i in 1:length(Pairs)) { log(prediction[i]) <- alpha + beta1 * Year[i] + beta2 * Year[i]^2 + beta3 * Year[i]^3 + bAnnual[Annual[i]] fit[i] <- prediction[i] residual[i] <- res_pois(Pairs[i], fit[i]) }", modify_data = function(data) { data$nObs <- length(data$Annual) data }, select_data = list("Pairs" = c(15L, 200L), "Year*" = 1L, Annual = factor()), random_effects = list(bAnnual = "Annual"), nthin = 10L) data <- bauw::peregrine data$Annual <- factor(data$Year) set_analysis_mode("report") ``` ## Analysis Mode Analysis mode can be set depending on the desired output. ```{r, eval = FALSE} set_analysis_mode("report") ``` Modes: - `quick`: To quickly test code runs. - Chains = 2L, iterations = 10L, thinning = 1L - `report`: To produce results for a report. - Chains = 3L, iterations = 500L - `paper`: To produce results for a peer-reviewed paper. - Chains = 4L, iterations = 1000L ## Analyse Analyse or reanalyse the model. ```{r} analysis <- analyse(model, data = data) analysis <- reanalyse(analysis) ``` __Analysis Table:__ - __n:__ Sample size. - __K:__ Number of parameter terms in the model. - __nchains:__ A count of the number of chains. - __niters:__ Number of iterations. A count of the number of simulations to save per chain. - __ess:__ Effective sample size. The number of independent samples with the same estimation power as the `n` autocorrelated samples. - Measure of how much independent information there is in autocorrelated chains. - Doubling the thinning rate doubles the `ess`. - __rhat:__ R-hat convergence diagnostic, compares the between- and within-chain estimates for model parameters. - Evaluates whether the chains agreed on the same values. - Close to 1 is ideal. ```{r} par(mar=c(1, 1, 1, 1)) plot(analysis) ``` __Coefficient Table__ Summary table of the posterior probability distribution. ```{r, message = FALSE} coef(analysis) ``` The estimate is the __median__ by default. The zscore is $mean / sd$. ```{r} coef(analysis, simplify = TRUE) ``` The s-value is the __suprisal__ value, which is a measure of directionality with respect to zero. The s-value is zero (unsurprising) when _p-value_ = 1.0 and increases exponentially as _p_ approaches zero. $$s = -log_2(p-value)$$ Example: How surprising it would be to throw 10 heads in 10 coin tosses. A larger s-value provides more evidence against the null hypothesis and support that the data is in the direction of the posterior. ## Predictions Example prediction: Make predictions by varying `Year` with other predictors, including the random effect of `Annual` held constant. ```{r, message = FALSE} year <- predict(analysis, new_data = "Year") library(ggplot2) ggplot(data = year, aes(x = Year, y = estimate)) + geom_point(data = bauw::peregrine, aes(y = Pairs)) + geom_line() + geom_line(aes(y = lower), linetype = "dotted") + geom_line(aes(y = upper), linetype = "dotted") + expand_limits(y = 0) ``` ### Predict `Predict()` queries the model and tells you what the expected number would be for that combination of values specified by [new data]. The example below would calculate the annual number of pairs for a typical number of fledged young of 50 (if `Eyasses` was a parameter in the model). ```{r, eval = FALSE} year <- new_data(data, "Year", ref = list(Eyasses = 50L), obs_only = TRUE) %>% predict(analysis, new_data = ., ref_data = ref) ``` __Arguments__ - __`new_data`__: Creates a new data frame to calculate the predictions for. - __`ref_data`__: A data frame with 1 row indicating the reference values for calculating the effects size. - This allows you to calculate the average change relative to something else. In this case `ref = list(Eyasses = 50L)`. Predict can also take the form: ```{r, eval = FALSE} year <- predict(analysis, new_data = character(0), term = "ePairs") ``` Where __`term`__ calls the string of a term in the [new expression] of the model. By default it is the `prediction[i]`. ### New Data Creates a new data frame to be passed to the [predict] function. The idea is that most variables are held __constant__ at a reference level while the variables of interest __vary__ across their range. ```{r, eval = FALSE} year <- new_data( data, seq = "Year", ref = list(Eyasses = 50L), obs_only = TRUE) %>% predict(analysis, new_data = ., ref_data = ref) ``` __Arguments__ - __`seq`__: The name of columns to vary over. In this example, `Year`. - If a factor is named in `seq` then all levels of the factor are represented. - __`ref`__: A named list of reference values for variables not in `seq`. - In this case, it is holding the column `Eyasses` __constant__ at 50L. - __`obs_only`__: A list of character vectors indicating the sets of variables to only keep __combinations__ for, i.e. combinations that were observed in the data. - If `obs_only = TRUE` then `obs_only` is set to be `seq`. - __`length_out`__: A count indicating the length of numeric/integer sequences. - If a factor is named in `seq` then all levels of the factor are represented (`length_out` is ignored). - The exception to this is if the factor is named in `obs_only`, then only observed factor levels are represented in sequences.